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SUMMARY

Transcription factors (TFs) control cellular processes
by binding specific DNA motifs to modulate gene
expression. Motif enrichment analysis of regulatory
regions can identify direct and indirect TF binding
sites. Here, we created a glossary of 108 non-redun-
dant TF-8mer ‘‘modules’’ of shared specificity for
671 metazoan TFs from publicly available and new
universal protein binding microarray data. Analysis
of 239 ENCODE TF chromatin immunoprecipitation
sequencingdatasetsandassociatedRNAsequencing
profiles suggest the 8mer modules are more precise
than position weight matrices in identifying indirect
binding motifs and their associated tethering TFs.
We also developed GENRE (genomically equivalent
negative regions), a tunable tool for construction of
matched genomic background sequences for anal-
ysis of regulatory regions. GENRE outperformed four
state-of-the-art approaches to background sequence
construction. We used our TF-8mer glossary and
GENRE in the analysis of the indirect binding motifs
for the co-occurrence of tethering factors, suggesting
novel TF-TF interactions. We anticipate that these
tools will aid in elucidating tissue-specific gene-regu-
latory programs.

INTRODUCTION

Tissue-specific gene-expression patterns are encoded in meta-

zoan genomes primarily via DNA sequence motifs that are

recognized by sequence-specific transcription factors (TFs).

Chromatin immunoprecipitation sequencing (ChIP-seq) data on

in vivo TF genomic occupancy have been used to infer cis regu-

latory elements and TF DNA binding sites (Garber et al., 2012;

Kundaje et al., 2015; Lara-Astiaso et al., 2014; Neph et al.,

2012). However, accurate identification of the bound TFs can

be complicated by cofactors modulating TF-DNA recognition

in vivo (Biddie et al., 2011; Jolma et al., 2015; Shiina et al.,
Cell S
2015; Slattery et al., 2011). Depending on the TF, indirect DNA

association through tethering by a sequence-specific TF with a

different binding motif (‘‘tethered binding’’) can explain a signifi-

cant fraction of a TF’s in vivo binding events (Gordan et al., 2009).

To discriminate between direct and indirect bindings and infer

recruiting factors (Gordan et al., 2009), ChIP-seq data are typi-

cally analyzed together with data on intrinsic TF DNA binding

specificities, such as those obtained from protein binding micro-

arrays (PBMs) (Berger et al., 2006) or HT-SELEX (Jolma et al.,

2013). Universal PBMs, which assay the binding of a TF to all

possible 8mers, have been used to screen�30%of themamma-

lian TF repertoire (Badis et al., 2009; Weirauch et al., 2014), and

PBM-derived in vitro binding specificities have been shown to

correlate highly with in vivo binding data (Berger et al., 2008;

Siggers et al., 2011a; Wei et al., 2010; Weirauch et al., 2013).

Although only a minority of the�1,400 human TFs (Vaquerizas

et al., 2009) have been assayed for DNA binding specificity, the

binding preferences ofmany of the remaining TFs can be inferred

from close homologs since members of TF families often exhibit

highly similar DNA binding specificities (Badis et al., 2009) and

share motif recognition (Berger et al., 2008; Nakagawa et al.,

2013; Wei et al., 2010). Analysis of the motif repertoire in a large

TF ChIP-seq collection (119 TFs in 72 cell lines) yielded just 79

unique motifs, 67 of which were already reported (Wang et al.,

2012a). Although it remains unclear how many unique motifs

will be sufficient to describe the human TF motif repertoire, a

well-curated, non-redundant core set of motifs would expedite

the identification of TF binding events in genomic sequences.

While exhaustive collections of motifs typically include thou-

sands of position weight matrices (PWMs) (Kheradpour and Kel-

lis, 2014; Weirauch et al., 2014), their quantitative clustering

suggested that core sets of approximately 100 motifs were suf-

ficient to predict TF targets across the genome (Kheradpour

et al., 2007) or to assess enrichment of motif combinations in

developmental enhancers (Gisselbrecht et al., 2013). However,

since those motif sets represented only available Drosophila

TF binding, and were derived from both in vitro and in vivo

data, they are not sufficiently comprehensive and accurate to

identify the genomic occupancies of human TFs.

While a PWMcan provide a good approximation of a TF’s DNA

binding specificity, PWM models can vary significantly between

motif-derivation algorithms in terms of their ability to capture
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in vivo TF binding sites (Weirauch et al., 2013). Moreover, TF sub-

families can recognize additional, distinct sequences (Badis

et al., 2009; Berger et al., 2008; Nakagawa et al., 2013; Siggers

et al., 2011a) that might be not captured by a single PWM repre-

senting the shared binding preferences of the TF family (Gordân

et al., 2013; Nakagawa et al., 2013). Furthermore, some TFs can

recognize two or more distinct sets of sequences that are better

represented as multiple motifs (Badis et al., 2009; Nakagawa

et al., 2013). Going beyond PWMs, k-mer-based models

describe a TF’s preferences for binding sequences of length k

and can capture higher-order complexities in DNA sequence

recognition, such as variable spacers or position interdepen-

dence, than do typical PWMs (Arvey et al., 2012).

The DREAM5 TF-DNA Motif Recognition Challenge (Weirauch

et al., 2013) compared a large selection of PBM-derived models

for TF specificity and concluded that for most of the examined

TFs, PWMs performed similarly to more complex models. More-

over, although k-mer models outperformed PWMs in predicting

in vitro TF DNA binding, PWMs performed better in distinguish-

ing in vivo binding (Weirauch et al., 2013). However, the DREAM5

competition evaluated performance on relatively few in vivo

datasets (five mouse ChIP-seq and four yeast ChIP-exo experi-

ments) and focused exclusively on the detection of direct DNA

binding with no assessment of indirect binding events.

Motif enrichment in ChIP-seq ‘‘bound’’ regions can be quanti-

fied by the area under the receiver operating characteristic

(AUROC) curve, the established metric to evaluate how well a

motif distinguishes the bound (foreground) from unbound (back-

ground) sequences (Gordan et al., 2009; Weirauch et al., 2013).

Use of an appropriate background set, therefore, is crucial

(Worsley Hunt et al., 2014); because of the sequence biases in

the genome (Badis et al., 2009; Plotkin and Kudla, 2011), accu-

rate identification of motif enrichment depends on the selection

of a background with contextual and compositional features

similar to those of the foreground (Hung and Weng, 2017). For

example, GC content varies across the genome (Nekrutenko

and Li, 2000), and, if not controlled for, can significantly bias

the identification of GC-rich sequence motifs in foreground

sequences.

A popular method to minimize this GC content bias is

sequence reshuffling with preservation of dinucleotide fre-

quencies (‘‘dinucleotide shuffle’’) (Bailey, 2011; Barrera et al.,

2016; Jiang et al., 2008; Kundaje et al., 2015;McLeay and Bailey,

2010; Weirauch et al., 2013, 2014). However, the resulting ran-

domized sequences are not native to the genome, and thus

potentially neglect other local and/or higher-order biases

inherent in the foreground, such as shape preferences (Abe

et al., 2015) or the periodic alternation of GC and AT nucleotides

within nucleosomal DNA (Struhl and Segal, 2013). Genomic re-

gions flanking the foreground sequences (‘‘flanking regions’’)

have been used as background to overcome this concern (Bailey

and Machanick, 2012; Orenstein and Shamir, 2014; Setty and

Leslie, 2015; Siggers et al., 2011a; Wang et al., 2012a), although

they do not exclude GC bias. Alternatively, background se-

quences obtained by supervised, semi-random selection from

the genome facilitate the control for sequence biases. In an anal-

ysis of 43 ChIP-seq datasets, GC-controlled random selections

of genomic sequences implemented by HOMER (Heinz et al.,

2010) and BiasAway (Worsley Hunt et al., 2014) software
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(‘‘GC-HOMER’’ and ‘‘GC-BiasAway’’) outperformed sequences

obtained by dinucleotide shuffle in detection of enriched motifs

(Worsley Hunt et al., 2014); however, that comparison did not

consider flanking regions as an alternate background (Worsley

Hunt et al., 2014) and did not evaluate motif enrichment by

AUROC (Weirauch et al., 2013).

In this study, we first assembled published universal PBMdata

(Badis et al., 2009; Barrera et al., 2016; Berger et al., 2008;

Nakagawa et al., 2013; Peterson et al., 2012; Siggers et al.,

2011a; Wei et al., 2010; Weirauch et al., 2013, 2014; Zhu et al.,

2012) for 650 metazoan TFs and expanded it with new data for

21 additional human TFs (Table S1). Clustering the PBM 8mer

data yielded a ‘‘glossary’’ of 108 TF-8mer specificity ‘‘modules,’’

where eachmodule associates one ormore TFswith their shared

set of recognized 8mers. We evaluated different types of

background sequences, including those generated by our

newly developed GENRE tool, which selects background

genomic sequence sets that are controlled for user-defined

sequence properties. GENRE outperformed other state-of-the-

art methods in identifying motifs enriched in a collection of 239

ENCODE ChIP-seq experiments (ENCODE Project Consortium,

2012). When we interfaced the glossary 8mer modules with

GENRE, we found that 8mers aremore specific but less sensitive

than PWMs in suggesting motifs for tethering factors. Integration

of gene-expression data from ENCODE RNA sequencing (RNA-

seq) experiments (ENCODE Project Consortium, 2012) into our

analysis enabled the precise identification of which TF, among

all the TFs associated with an enriched motif, is likely to be

responsible for tethering the ChIPed factor. This analysis also

suggested that 8mer modules are preferable to reveal additional

motifs recruiting TFs indirectly. Finally, we identified several TF

tethering interactions, both known and novel, which we charac-

terized by comparing the peak overlap of co-binding factors and

the co-occurrence of the indirect motif.

RESULTS

Constructing a Glossary of 8 bp Sequences Specific for
TF (Sub)Families
We collected 773 universal PBM 8mer datasets for 650 meta-

zoan TFs from the UniPROBE (Hume et al., 2015) and CIS-BP

(Weirauch et al., 2014) databases (Table S1). In addition, to

expand the available data for TF DNA binding domain (DBD)

classes with poorly (e.g., ARID) or incompletely (e.g., C2H2

zinc-finger and nuclear hormone receptor) characterized DNA

binding specificities, we performed universal PBM experiments

for 63 TFs, 21 of which previously lacked PBM data (Table S1).

After filtering the PBM data according to quality control criteria

(STAR Methods), our final dataset includes 671 TFs from 10

different species assayed in 715 PBM experiments, often merg-

ing two independent replicates with different PBM array designs

(Berger et al., 2006). This dataset encompasses 10,428 bound

8mers with more than 20 DBD classes represented by at least

3 TFs (Figure 1A).

To group TFs with their recognized 8mers into TF-8mer ‘‘mod-

ules,’’ we performed hierarchical clustering on all the TFs and

‘‘bound’’ 8mers according to their E-scores (Badis et al., 2009)

(Figure S1A). Because TF families and subfamilies are highly

variable in their motif information content, we reasoned that
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Figure 1. Glossary of 108 TF-8mer Modules

Derived from PBM Data

(A) Venn diagram depicting sources of PBM data

analyzed in this study (Table S1).

(B) Schema of the TF-8mer clustering strategy. The

8mer dendrogram (left) is initially cut into several

alternative cluster collections (red to orange)

defined solely by the minimal number of 8mers

contained in each cluster, called the clusterminimal

size (CMS), which we varied between 20 and 100

8mers. We created an optimal collection of

‘‘merged clusters’’ by progressively matching

collection pairs (blue to cyan); i.e., the comparison

of the collectionswithCMS20 and 25 produces the

intermediate collection 20–25, which is then

compared and matched to CMS 30, and then iter-

atively up to the CMS 100, which gives the final

merged clusters (black, Modules). Alternative clus-

ters for the same 8mers are matched according to

the depicted rules (STAR Methods): 1-to-1 match,

Cluster rescue, and Neighbor clusters comparison.

(C) Left: 2D hierarchical re-clustering of 671 TFs

(715 PBM datasets) and 10,428 ungapped 8mers

bound (E R 0.3) in at least one of the PBM data-

sets. Black frames within the heatmap outline the

108 modules of correlated TF-8mer binding pro-

files; colored bars to the left of the heatmap

denote glossary modules. Right: zoom-ins on the

modules specific to ETS TFs.

(D) Distribution of TF-8mer modules across TF

DNA binding domain (DBD) (sub)families.

(E) ARID module comparison. Right: Zoom-in on

the two ARID modules from the heatmap shown

in (B). Left: for each ARID module: 8mers with the

highest E-score (Top 8mers with core consensus

sequence in red), PWMs of module 8mers (PWM),

and the CIS-BP PWMs of the TF with highest

mean E-score specificity within each module (Top

TF PWM) (Table S2).
imposing a fixed PBM8mer E-score threshold to cut the dendro-

gram into branches might hinder the recognition of local 8mer

patterns corresponding to different TFs with similar binding pref-

erences and likely within the same TF family. Therefore, we first

created several independent collections of 8mer clusters by

repeatedly cutting the 8mer dendrogram in a size-dynamic

manner (Langfelder et al., 2008) (Figure 1B). To associate spe-

cific TFs to each 8mer cluster, we applied two-means clustering

on the E-score profile to discriminate TFs exhibiting high versus

low specificity for the 8mers (Figure S1B). We then created an

optimal collection of ‘‘merged clusters’’ by progressively

comparing and matching collection pairs (Figures 1B and S1C

STAR Methods). After one round of re-clustering, this analysis

of TF specificity yielded a ‘‘glossary’’ of 108 TF-8mer modules

used in the rest of this study (Figure 1C; Table S2), which we

also used to construct PWMs for each module (‘‘8mer PWM’’)

and to identify the most representative PWM (‘‘TF PWMs’’).
Cell Sys
TF-8mer Glossary Discriminates
TFs and TF Subfamilies with
Distinct Specificities
To investigate the degree to which the

TF-8mer modules capture families of
closely related TFs, we evaluated each module’s homogeneity

in terms of the DBD structural classes of its member TFs. The

vast majority of the modules (90/108) predominantly comprised

TFs from single DBD classes (Figure 1D) and recapitulate previ-

ously reported TF specificities (Table S2).

Although prior studies have analyzed PBM data to explore the

heterogeneity of DNA sequence recognition by TFs from various

DBD classes, those studies were either based on much smaller

datasets (Badis et al., 2009; Gordan et al., 2011) or were focused

on specific TF families and did not consider binding specificities

shared by TFs from different DBD classes (Berger et al., 2008;

Grove et al., 2009; Nakagawa et al., 2013; Wei et al., 2010;

Weirauch et al., 2014). Here, by comparing the 8mer binding

preferences of a large collection of TFs across a wide range of

DBD classes, our glossary reveals distinct sequence prefer-

ences of TF subfamilies, such as ETS (Figure 1C), IRF, and

FOX, and of individual TFs, such as TEA (Figure S1D). For
tems 5, 187–201, September 27, 2017 189
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Figure 2. GENRE: A Tool for Constructing Matched Genomic Background Sequence Sets

(A)Motivating example showing lack of discriminatory power of background sequence sets based on dinucleotide shuffle or flanking regions.Motif enrichment for

EGR1 ChIP-seq peaks in GM12878 cells (Table S3) calculated using 108 individual TF PWMs (Table S2; STAR Methods) representing each of the glossary

modules. Scatterplot of motif enrichment AUROC values obtained using dinucleotide shuffle (y axis) versus flanking regions (x axis) as the background. Black

triangles and dark gray squares indicatemotifs found enriched using both or just one background type, respectively (AUROC> 0.5 and p < 0.05 Fisher’s exact test

with false discovery rate correction). Colored dots highlight the PWMs represented in the sequence logos.

(B) GENRE schema. The whole genome is tiled in non-overlapping regions of fixed size, as determined by the foreground set (Tiling). The regions are grouped

according to similarities in sequence and genomic features chosen by the user (Grouping by feature combinations). For each foreground sequence, a background

sequence is randomly sampled from the bin with the same feature grouping (Matching background to foreground). In this study, the sequence features are GC

content andCpG frequency, and the genomic features are promoter overlap, i.e., percentage of the sequence locatedwithin 2 kb upstream of a transcription start

site, and repeat overlap.

(C–E) Distributions of GC content and promoter overlap differ across foreground, random genome, and flanking regions. 2D density plot for promoter overlap and

GC content (C) in all the ChIP-seq foreground regions analyzed in this study (Table S3), (D) in a representative subset of the default GENRE tiles for the human

genome (hg19 version, STAR Methods), and (E) in the 200 bp flanking regions located 1 kb upstream of the foreground ChIP-seq peaks.
example, the glossary divides ARID TFs, which were previously

not clearly distinguishable according to their TF PWMs, into

two modules with distinct specificities, with the ARID5 module

TFs recognizing an ATATTG motif and the ARID3 module TFs

recognizing an ATCAA motif (Figure 1E).

GENRE, a Method for Constructing Background
Sequences Matched for Genomic Regulatory Regions
We utilized our TF-8mer glossary to evaluate how different

background generation methods in motif analysis influence the

motif enrichment statistics. We first compared four different

commonly used methods for background construction, de-

scribed above: dinucleotide shuffle, flanking regions, GC-

HOMER, and GC-BiasAway. For our study, we compiled 239

ChIP-seq datasets from 80 sequence-specific TFs examined in

33 different cell types by the ENCODE Consortium (Table S3)

(ENCODE Project Consortium, 2012). For each dataset, we
190 Cell Systems 5, 187–201, September 27, 2017
took as foreground sets the top 500 ChIP-seq peaks, trimmed

at ±100 bp around the peak summit. As in DREAM5 (Weirauch

et al., 2013), we scored motif enrichment in each ChIP-seq

foreground set by AUROC.

Overall, these different types of background sequences

yielded similar, strong enrichment of the motifs corresponding

to direct DNA binding by the ChIPed TFs (Table S4). For

example, the EGR motif was highly enriched within EGR1

ChIP-seq peaks in GM12878 cells using either dinucleotide

shuffle background or flanking regions background (Figure 2A).

In contrast, themilder enrichment of additional motifs was incon-

sistent using different background methods (dark gray squares,

Figure 2A). Accurate identification of such additional motifs,

like those for the hematopoietic factors PU.1 (also known as

SFPI1 and encoded by SPI1 gene) and ZFX (Zon, 2008), may

suggest tethering factors mediating indirect DNA binding of the

ChIPed TF.



To enhance the ability to identify co-regulatory motifs in fore-

ground genomic regions, we developed GENRE (genomically

equivalent negative regions), a genome randomization method

for constructionof genomicallymatchedbackground sequences.

To overcome limitations of previous methods for generating

background sequences, we designed GENRE to allow a user to

choose genomic features that represent potential biases for the

sequence, e.g., GC content, CpG dinucleotide frequency (Bhasin

and Ting, 2016; Spruijt and Vermeulen, 2014), and the overlaps

with repeat sequences (Boeva, 2016) (‘‘repeat overlap’’) and

with the promoters (‘‘promoter overlap’’), defined as the 2 kb re-

gions upstream of transcription start sites (STAR Methods).

In brief, GENRE first builds a database of putative background

sequences by tiling a genome in non-overlapping regions and

then grouping the sequence tiles according to the user-specified

sequence features (Figure 2B; STAR Methods). Next, GENRE

matches each foreground sequence to the database bin with

the same grouping of features, and then randomly samples a

background sequence from that bin. To investigate contextual

and compositional biases that might impact the construction of

background sequences, we again considered the top 500

ChIP-seq peaks from each of 239 ENCODE ChIP-seq datasets

as foreground sets. We then used GENRE to construct back-

ground sets, controlling for all four of the potential sequence

bias features discussed above.

We noticed that the feature distributions in the ENCODE

ChIP-seq foreground sets were either all-or-none, such as for

promoter (Figures 2C, 2D, S2A, and S2B) and repeat (Figures

S2C and S2D) overlaps, or pronouncedly skewed, such as for

GC content (Figures 2C and 2D) or CpG frequency (Figure S2).

To optimize the binning, GENRE classifies features binarily for

those with all-or-none distributions and utilizes quartiles for

features with skewed distributions. The interdependency be-

tween features can also affect background construction, as

noticeable in the high GC content exhibited by most promoters

(Boeva, 2016) (Figure 2C), whereas promoters and GC-rich

regions are rare across the whole genome. Random genomic

promoters (rightmost column, Figure 2D) exhibited a GC content

distribution in between that of the foreground peaks (Figure 2C)

and the whole genome (Figure 2D). By selecting only from the

random genomic promoters, GENRE can better match the

foreground sequences with high GC content (STAR Methods).

Notably, background sets constructed by flanking regions

(Figure 2E) exhibited a GC content of overlapping promoters

markedly reduced compared with foreground sequences

(Figure 2C), indicating that within flanking regions not all of the

foreground features’ attributes are accurately represented.

Glossary-Based Evaluation of Construction Methods
for Background Regulatory Sequences
We compared GENRE with dinucleotide shuffle, flanking re-

gions, GC-HOMER, and GC-BiasAway for their impact on motif

enrichment statistics, considering the 239 ENCODE ChIP-seq

datasets and 108 glossary modules as a benchmark (Table S3)

(ENCODE Project Consortium, 2012). To evaluate the perfor-

mance of each background construction method, we consid-

ered two criteria. First, we noted that since the binding motif

anchoring a ChIPed TF tends to occur near the center of a

ChIP-seq peak (Bailey and Machanick, 2012; Wang et al.,
2012a), its enrichment and median distance to the peak summit

tend to be correlated. For example, TEAD4 ChIP-seq peaks are

enriched for the TEA motif in hepatocellular carcinoma (HepG2)

cell lines (Figure 3A) and human embryonic stem cells (H1-

hESCs, data not shown), consistent with direct binding of

TEAD4 to the regions bound in vivo. Accordingly, the TEA motif

tends to occur near the peaks’ centers. In contrast, the GATA,

rather than the TEA, motif is both enriched and centered within

TEAD4 ChIP-seq peaks in the human leukemia K562 cell line

(Figure 3A), suggesting that TEAD4 associates indirectly with

DNA via a directly bound GATA factor in K562 cells (Figure 3A).

Therefore, we calculated the Spearman rank correlation coeffi-

cient rho between the motif enrichment AUROC value and the

motif-summit distance (‘‘AUROC distance correlation’’) as a

summary statistic across all 239 ChIP-seq datasets and 108

glossary modules (Figure 3B).

Our second criterion was themedian absolute deviation (MAD)

of the AUROC distribution, which we used to estimate the spec-

ificity of a background in guarding against false-positive motif

enrichment. As noted in previous analysis of motif over-repre-

sentation (Worsley Hunt et al., 2014), the genomic occupancy

of a factor typically involves just a few different TF binding site

motifs. Most of the AUROC values obtained by the glossary

across the ChIP-seq datasets are thus distributed around a

central bulk of ‘‘no enrichment’’ (AUROC = 0.5) (Figures 3B

and S3). Therefore, we reasoned that the ability of a background

method to filter out false positives is associated with low AUROC

dispersion, which we measured by the MAD. As opposed to the

standard deviation, the MAD can more robustly exclude the ef-

fect of outliers, which we expected to occur from enrichment

of a TF’s direct motif (Table S4).

Considering these two criteria, the best method is the one with

an AUROC distance correlation closest to �1 and AUROC MAD

closest to 0 (gray lines in Figure 3C). Thus, the methods based

on genome randomization (GENRE, GC-HOMER, and GC-

BiasAway) outperformed dinucleotide shuffle and flanking re-

gions, with GENRE performing the best overall (Figures 3C and

S3). Each of the GENRE features was validated using an all-but-

one analysis as well (Figure S3). To assess whether the perfor-

mance of a background depends on the sequence specificity of

the ChIPed TFs, we repeated the comparison on subsets of the

ChIP-seq datasets, sorted by TF family (Figures 3D and 3E).

Indeed, for certain families, such as TEA (Figure 3D), the results

werehighlyconcordantacrossdifferent typesofbackgroundwhile

for others, such as KLF, which includes EGR and SP TFs (Fig-

ure 3E), the choice of the background had a strong influence on

the motif enrichment. Overall, GENRE typically outperforms the

other background construction methods (Figures 3C–3E and S4).

Glossary TF-8mer Modules Outperform PWMs in
Identifying Enriched Motifs within ChIP-Seq ‘‘Bound’’
Regions
Since the DREAM5 evaluation on ChIP data was performed for

just nine TFs and considered the enrichment of just the direct

binding motif, in this study we undertook an extensive compari-

son of the ability of our glossary’s TF-8mer modules versus TF

PWMs to identify direct versus indirect binding in 239 human

ENCODE ChIP-seq datasets in comparison with background

sets constructed by GENRE. To evaluate the performance of
Cell Systems 5, 187–201, September 27, 2017 191
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Figure 3. Evaluation of Different Background Models for Analysis of Motif Enrichment in ChIP-Seq Peaks
(A) Scatterplots depicting correlation between the position of the best scoring TF PWMmatch (Table S2) relative to each peak’s summit (Motif-Summit Individual

Distances) and the score of that best TF PWM match (Motif match score). The histograms adjacent to each plot represent the marginal distributions. PWMs

associated with TEA (left panels) and GATA (right panels) modules were used to scan the top 500 TEAD4 ChIP-seq peaks in HepG2 (upper panels) or in K562

(lower panels) cells from ENCODE. Cartoons depict molecular interpretations of the motif enrichment results: TF with direct DNA binding (black ovals), TF with

indirect binding (gray oval), and ChIPed antibody (red sticks).

(B) Scatterplot of the AUROC values for PWMmatch score calculated using GENRE background (TF PWMs with GENRE) versus the median distance of the best

PWM match from the peak’s summit (Motif-Summit Distance). Each point represents one of the 108 TF PWMs applied to one of the 239 ENCODE TF ChIP-seq

datasets (as in Figure 2A). Colored points indicate the 2 PWMs and 2ChIP-seq datasets analyzed in (A). Numbers in blue box above the plot report the twometrics

used for background evaluation: R, the Spearman rank correlation coefficient rho between all the values of Motif-Summit Distance and PWM AUROC in the

scatterplot (R = �0.53, p << 0.001); AUROC MAD, the median absolute deviation across all the AUROC values in the scatterplot.

(legend continued on next page)
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Figure 4. PBM-Derived TF-8mer Glossary

Precisely Identifies In Vivo TF Binding

Events

(A) As in Figure 3B, but with 8mer modules instead

of PWMs used to calculate AUROC values and

motif-summit distances.

(B) As in Figure 3C, but with calculation of AUROC

values and identification of motif occurrences

within ChIP-seq peaks using either 8mer modules,

8mer-derived PWMs, or TF PWMs representing

each of the modules (Table S2). All the reported

values of Spearman rho (R) were highly significant

(p << 0.001).

(C) Motif enrichment in ChIP-seq peaks for 239

sequence-specific TFs (ENCODE Project Con-

sortium, 2012), calculated using all 108 glossary

8mer modules versus individual TF PWMs repre-

senting each of the glossary modules (Table S2;

STAR Methods). Black boxes highlight AUROC

values corresponding to the expected direct

binding of the ChIPed TF to its cognate motif.

(D) Significantly enriched 8mer modules or corre-

sponding TF PWMs in H1-hESCChIP-seq peaks of

NANOG and OCT4 (encoded by the POU5F1

gene). Black boxes highlight AUROC values cor-

responding to the expected direct binding of the

ChIPed TFs to their cognate motifs. Green dotted

boxes highlight other reported pluripotency TFs.

AUROC color bar as in (C).

(E) Enrichment of 8mer modules versus TF PWMs

in ChIP-seq peaks of the corresponding bZIP and

bHLH TFs. AUROC color bar as in (C).

(F) Same as in (E) for ETS TFs.
each motif model, we utilized the AUROC distance correlation

and AUROC MAD criteria described above. For the TF-8mer

modules, we computed the AUROC by comparing the presence

of these 8mers in the foreground versus background sequences

(Barrera et al., 2016) (STAR Methods).

The 8mer modules exhibited AUROC values that were more

narrowly distributed (MAD = 0.021) and less correlated with the

motif-summit distance (Spearman rank correlation coefficient

rho [R] = �0.4) than did TF PWMs (MAD = 0.04 and R = �0.52,

respectively, Figures 3B and 4A). Thus, according to these

criteria, 8mer modules are more specific, but less sensitive,

than PWMs in detecting motif enrichment, suggesting that the
(C) Choice of background type has an impact on the performance of motif enrichment analysis. For each bac

correlation R were evaluated aggregately across the 239 ChIP-seq datasets as in (B). All the reported v

(p << 0.001). Gray dashed lines indicate the limits of specific (x = 0, minimal deviation) and sensitive (y = �1

(D) As in (C), but for ChIP-seq data for TEA TFs. Right insets depict AUROC values versus Motif-Summit Dis

TEAD4 ChIP-seq peaks from HepG2 cells and either flanking regions (lower plot) or dinucleotide shuffle (upp

values of Spearman rho (R) were highly significant (p << 0.001).

(E) As in (D), but for ChIP-seq data for KLF/EGR TFs in GM12878 cells.

Cell Sys
module-based enrichment analysis yields

fewer potential false positives. To rule

out the possibility that these differences

might have arisen from artifacts due to

glossary specificity, we evaluated the

performance of PWMs constructed from

the 8mers of each module. These
‘‘8mer-derived PWMs’’ recapitulated the performance of the

individual TF PWMs (Figure 4B), supporting our conclusion that

the difference in motif enrichment predicted by PWMs and

8mers was a property of the type of motif model used in the anal-

ysis. Across the entire matrix of 108 glossary motifs and 239

ChIP-seq datasets, the 8mer modules resulted in an overall

sparser set of enriched motifs, providing a ‘‘sharper,’’ potentially

more precise view of motif enrichment (Figure 4C). This ability,

which was consistent in ChIP-seq data across TF families

(data not shown), can furnish a reasonable trade-off since an

experimentalist would prefer greater confidence in a smaller

number of predicted interactions to test experimentally.
kground type, AUROCMAD, and AUROC distance

alues of Spearman rho (R) were highly significant

, maximal inverse correlation) outcomes.

tances obtained using the 108 TF PWMs applied to

er plot) as the background model. All the reported

tems 5, 187–201, September 27, 2017 193



DeepBind, a machine-learning approach to describe TF

sequence specificity by a set of motif detectors that function

similarly to PWMs, had been reported recently to outperform

the models previously tested in the DREAM5 Challenge (Alipa-

nahi et al., 2015). Therefore, for the 13 glossary modules also

present as DeepBind models, we compared the motif enrich-

ment across the 239 ChIP-seq datasets and found that

DeepBind models behaved similarly to single PWMs (Figure S5).

To corroborate our findings, we looked at relevant biological

cases provided by our datasets. Within the ChIP-seq peaks of

the two pluripotency TFs OCT4/POU5F1 and NANOG in human

embryonic stem cells (Figure 4D), bothmodels resulted in enrich-

ment of the POU and homeodomain motifs, consistent with

direct binding by OCT4 and NANOG, and also of the motifs for

other pluripotency TFs (e.g., SOX, ZIC, TEA, and FOX) (Luo

et al., 2015; Yagi et al., 2007; Young, 2011). However, in contrast

to the TF-8mer modules, 46 TF PWMs of TF families (e.g., IRF,

E2A, and CEBP) that, to our knowledge, have not been impli-

cated in pluripotency and that are not expressed at this stage,

were enriched, suggesting that the TF-8mer modules result in

more specific, biologically relevant motif enrichment. Similarly,

the TF-8mer modules of bZIP and bHLH TFs overall outper-

formed PWMs in terms of higher AUROC values, consistent

with direct DNA binding by the ChIPed TF, and the motif enrich-

ment being more specific to the ChIPed TF’s family (Figure 4E).

The motif enrichment results for ETS TFs also highlighted the

higher specificity of TF-8mer modules in distinguishing direct

DNA binding of ETS subfamilies, compared with PWMs derived

for individual members of the ETS subfamilies (Figure 4F).

Gene-Expression Profiles Corroborate k-mer-Based
Predictions of Lineage-Specifying TFs
TF expression levels are highly regulated during cellular differen-

tiation as they play a key role in controlling the underlying network

of regulatory interactions. Cell types can be distinguished by the

upregulation of particular TF families, such as IRF TFs in

GM12878 cells (Figure 5A), or of a specific TF from a TF family,

such as POU5F1 in H1-hESCs (Figure S6A). We considered the

expression patterns of 7 cell lines highly represented in the 239

ENCODE ChIP-seq datasets analyzed in this study (Table S5).

We noticed that, within a given cell line, themotifs enrichedwithin

ChIP-seq peaks often suggested indirect binding and,moreover,

matched the specificities of highly expressedTFs (Figures5Band

S6B). For example, in GM12878 cells, peaks for non-IRF TFs

frequently exhibited an enriched IRF motif (right inset, Figure 5B)

centered within the ChIP-seq peaks (Figure 5C). This suggests

that an IRF TF, such as IRF1, IRF4, or IRF8, which are expressed

highly in GM12878 cells (Figure 5A), mediates indirect DNA bind-

ing for the ChIPed non-IRF TFs (e.g., PU.1 and BATF). These re-

sults both recapitulate well-characterized interactions, such as

between IRF4 and PU.1 or BATF (Glasmacher et al., 2012; Mur-

phy et al., 2013), and suggest additional binding partners for

IRF TFs (e.g., CEBPB, ATF2, RUNX3, and MEF2A). We noticed

similar behavior for other TF families in different cell lines, such

as FOX in HepG2 cells, GATA in K562 cells, and TEA and ZIC in

H1-hESCs (Figure S6B).

Whilemotifs of highly expressed TFswere found to be similarly

enriched regardless of the use of PWMs or 8mer modules, or of

different types of background (with the notable exception of
194 Cell Systems 5, 187–201, September 27, 2017
flanking regions), the enrichment of motifs of TFs that were not

highly expressed was much more subject to the choice of motif

model and background (Figures 5B and S6B). To evaluate the

impact of different parameter settings in the motif enrichment

analysis, we inspected the gene-expression levels of the TFs

whose motifs are enriched. Since motif enrichment results sug-

gestive of indirect binding were much more variable on the

choice of motif model and background type than direct binding

(Table S4), we focused our analysis on indirect binding. Here,

we considered all members of 12 TF families with well-character-

ized, distinct motifs, and which are known to drive particular

cellular differentiation processes (STAR Methods).

To quantify the upregulation of the putative tethering TFs in

each cell line, we calculated the Z score of their enrichment

among genes highly expressed in the respective cell line

(STAR Methods). To identify a reliable expression range for fac-

tors that are upregulated in a highly cell-type-specific manner

and are known to mediate regulatory interactions in those cells,

we first assembled a reference set of cell-type-specific regula-

tors (e.g., Sox2 and Oct4 in H1-hESCs) (STAR Methods) and

noticed that their expression ranked within the top 3,000 most

highly expressed genes (Figure S6C). Among these highly ex-

pressed genes, we found that the tethering TFs predicted using

the glossary 8mer modules with GENRE background were

significantly enriched (Z score = 4) (Figure 5D).

Having established this threshold and the Z score metric for

the most highly expressed genes, we then compared the enrich-

ment of tethering TFs predicted using the different motif models

and background types (Figure 5E). While flanking regions strik-

ingly resulted in complete lack of enrichment, most of the back-

ground types yielded similar, modest enrichment (Figure 5E);

therefore, in subsequent analyses, we used only GENRE back-

ground sets and found that 8mer modules resulted in strong,

highly significant enrichment, in contrast to TF PWMs and

8mer-derived PWMs (Figure 5E). These gene-expression Z

score values correlated with the AUROCMAD values (Figure 5F),

supporting the conclusions that (1) the use of 8mer modules

rather than PWMs results in more reliable predictions of tethering

factors responsible for indirect binding, and (2) regions flanking

peaks do not represent a reliable background.

Novel TF Tethering Interactions
We further investigated the significantly enriched TF-8mer mod-

ules obtained using GENRE background (Figure 6A) to further

characterize the potential interactions between a ChIPed TF

(Tethered TF A) and motifs bound indirectly (Indirect Motif from

Module B) through other TFs (Tethering TF B) (Figure 6B). By

fixing thresholds for AUROC (>0.6) and motif-summit distance

(<40 bp) that reliably distinguished the enriched, peak-centered

modules from the background noise (Figure 6A), we identified 48

indirect in vivo interactions sometimes occurring in multiple cell

types (Table S6), of which 16 were previously validated within

the literature, 19 had been proposed in prior studies but had

not been confirmed experimentally, and 13 that to our knowl-

edge were novel to this study.

We noticed that the enrichment of the cognate motif of the

Tethered TF A (i.e., Module A 8mers) and that of the indirect motif

recognized by the Tethering TF B (i.e., Module B 8mers) were not

highly correlated (Figure 6C). However, we found that amarkedly
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Figure 5. Gene-Expression Data Corroborate the Glossary-Derived Motif Enrichment and Identify Lineage-Specific Regulators

(A) Expression ranks of IRF TFs in the indicated cell types, as determined by independently ranking the whole genome by RNA-seq expression levels (fragments

per kilobase of transcript per million fragments mapped) (Trapnell et al., 2010) (Table S5).

(B) Enrichment of IRF motif in ChIP-seq peaks of non-IRF TFs in various cell lines (rows) calculated using the indicated background sets (as in Figure 3C) and

specificity models (as in Figure 4B). Enrichment suggests DNA tethering of the ChIPed TF through an IRF TF. Bars along the y axis (left) indicate cell lines used in

ChIP-seq experiments, color-coded as in (A). Inset: zoom-in on GM12878 peaks for the indicated ChIPed TFs.

(C) Scatterplot of IRF 8mer module AUROC values calculated using GENRE background versus the median distance between the best IRF motif match from the

summit of a non-IRF TF’s ChIP-seq peak (IRF Motif-Summit Distance) (as in Figure 3B). Only non-IRF TF peaks were used, as in (B). Known immune factors are

highlighted.

(D) Enrichment of putative tethering TFs among the top expressed genes. Motif enrichment was calculated using the 8mer modules with GENRE background (as

in Figure 4A). x axis: threshold gene-expression rank used to call highly expressed genes; y axis: Z scores calculated using 200 randomly reshuffled genomes.

*p < 0.01, calculated as the fraction of the randomly reshuffled genomes that resulted in more putative tethering TFs being included among the top expressed

genes than that obtained with the real genome.

(E) Enrichment of putative tethering TFs among the top 3,000 most highly expressed genes (Table S5), calculated using the different motif models and back-

ground types. *p < 0.01, calculated as in (D).

(F) Scatterplot of AUROC deviation (MAD) (see also Figures 3C and 4B) calculated using the different motif models and background types versus Z scores

presented in (E).
higher enrichment of indirect motifs discriminated cases where

the tethered TF A is recruited by a tethering TF B, such as

TAL1 by GATA1/2 in K562 cells (Wadman et al., 1997). In

contrast, for the bZIP TF BACH1, which binds DNA as a hetero-

dimer with MAFK, we instead found that the direct bZIP motif

(Module A) was enriched to a similar degree as the indirect

MAF motif in H1-hESC (Module B), in agreement with the fact

that the BACH1:MAFK dimer jointly recognizes both motifs

(Newman and Keating, 2003). For known stabilizing, co-binding

interactions, such as IRF4:PU.1 or IRF4:BATF, the enrichment of

direct motifs (e.g., ETSIII and bZIP as Modules A, respectively)

was slightly higher than that of the indirect motifs (e.g., IRF as

Module B) (Escalante et al., 2002; Murphy et al., 2013). There-
fore, we conclude that the relative enrichment of Modules A

and B in these analyses can distinguish which in vivo interactions

are truly indirect TF-DNA interactions, versus stabilized, DNA co-

binding events.

To further investigate the identified indirect interactions, we

analyzed the degree of overlap between the sets of ChIP-seq

peaks bound by Tethered TF A and Tethering TF B (Table S7).

We examined all the potential Tethering TFs that were also as-

sayed by ChIP-seq in the same cell line as was the Tethered

TF A (Table S3) and selected the Tethering TF B as the one

that shared the largest percentage of peaks with Tethered TF

A (STAR Methods). Overall, strong enrichment of the indirect

motif was consistent with a high degree of peak overlap,
Cell Systems 5, 187–201, September 27, 2017 195
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Figure 6. Enrichment of Modules for Indirect TF Binding Predicts TF Co-occupancy

(A) Scatterplot as in Figure 4A, highlighting indirect or direct TF binding (Table S6) as determined by the TF’s known cognate motif (direct) or a different motif

(indirect).

(B) Cartoons depicting two possible modes of indirect binding: fully tethering or cooperative co-binding.

(C) Indirect interactions from (A). Enrichment of the direct binding motif of the ChIPed Tethered TF A (AUROC of module A) (x axis) and of its indirect binding motif

(AUROC of module B) (y axis). Blue scale indicates the percentage of overlapping peaks shared by the Tethered TF A and a candidate Tethering TF B associated

with Indirect Module B (Table S7). Gray points signify that no putative tethering TF was assayed by ChIP-seq (Table S3). Cartoons depict literature validated

(denoted by red circle) molecular models following the coloring scheme in (B).

(D) Examples of indirect interactions, which to our knowledge have not been previously reported, identified by integrating motif enrichment results with the extent

of ChIP-seq peak overlap (Tables 1 and S8).
corroborating the identified indirect interactions (Figure 6C). For

many indirect interactions, we observed that cutoffs larger than

5,000 peaks gave a nearly complete overlap in the sets of peaks

bound by TFs A and B (Table S7), such as for TAL1 and GATA2 in

K562 cells (top left, Figure 6C). In cases where the degree of

peak overlap was intermediate, we investigated whether the

presence of the indirect motif distinguished overlapping peaks

(Table S8) and was thus more likely to indicate a tethering inter-

action. For most of these interactions (37 of 44), we observed

significant co-occurrence (p < 0.05) of the indirect motif and

the ChIP-seq peaks of the tethering TF, such as for BACH1 being

tethered by MAFK in H1-hESC (top right, Figure 6C).

Overall, our analysis suggests previously unknown TF teth-

ering interactions (Table 1; Figure 6D). For example, ARID3
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may co-bind DNA through the lineage-specifying factors

GATA1/2 in K562 cells and FOXA1/2 in HepG2 cells. TEAD4

seems fully tethered by GATA1/2 in K562 cells, but in HepG2

and H1-hESC cells it binds DNA directly (Table S4). In HepG2

cells, ZBTB7A does not recognize DNA directly, but through

the tethering factor RXRA, and not the lineage-specifiers

FOXA1/2. Similarly, in GM12878 cells, SIX5 and FOXM1 bind

DNA indirectly through NFkBp65 and bZIP motifs respectively,

rather than by the lineage-specifier IRF TFs.

DISCUSSION

Tethering interactions expand the combinatorial complexity

of the underlying regulatory networks, allowing genes to be



Table 1. Previously Proposed or Novel TF Tethering Interactions Predicted Using the Glossary 8mer Modules with GENRE

Background

Tethered TF

Direct

Module Cell Line

Direct

AUROC

Indirect

Module

Indirect

AUROC

Tethered TF

Peaks with

Indirect Motif Tethering TFs (Peak Overlap Percentages)

Motif Enrichment Consistent with Previously Proposed TFs

ATF3 bZIP GM12878 0.60 bHLH 0.75 64.0% USF1 (71%), MAX (70%), USF2 (64%),

CMYC (25%)

H1-hESC 0.65 0.75 63.6% USF1 (67%), USF2 (65%), MAX (58%)

HepG2 0.63 0.73 63.2% MAX (79%), USF1 (66%), USF2 (56%)

K562 0.71 0.71 59.8% MAX (93%), USF1 (63%), USF2 (46%)

ESRRA ESRR HepG2 0.82 HNF4 0.62 40.0% HNF4A (75%), HNF4G (74%)

FOSL2 bZIP HepG2 0.91 FOX 0.63 66.2% FOXA1 (81%), FOXA2 (71%)

NFE2 bZIP GM12878 0.56 bHLH 0.89 87.0% USF2 (100%), USF1 (98%)

RFX5 RFX HeLa 0.76 bZIP 0.64 43.0% FOS (26%)

HepG2 0.79 0.62 35.0% CJUN (10%)

K562 0.74 0.62 37.0% FOS (37%), CJUN (20%)

RXRA zfC4 HepG2 0.78 FOX 0.68 72.6% FOXA1 (90%), FOXA2 (83%)

SP1 KLF HepG2 0.53 FOX 0.68 70.8% FOXA1 (81%), FOXA2 (78%)

TCF12 E2A HepG2 0.53 FOX 0.73 85.4% FOXA1 (98%), FOXA2 (94%)

Previously Proposed Motif, Newly Predicted Corresponding TFs

ATF3 bZIP GM12878 0.60 bHLH 0.75 64.0% BHLHE40 (58%)

HepG2 0.63 0.73 63.2% BHLHE40 (69%)

K562 0.71 0.71 59.8% BHLHE40 (73%)

CEBPB CEBPB GM12878 0.57 ETS 0.64 75.8% ETS1 (17%), ELK1 (14%)

CJUN bZIP H1-hESC 0.75 TEA 0.66 47.4% TEAD4 (61%)

NFE2 bZIP GM12878 0.56 bHLH 0.89 87.0% MAX (78%), BHLHE40 (69%), CMYC (17%)

PRDM1 NA HeLa NA bZIP 0.66 43.6% FOS (27%)

RFX5 RFX HepG2 0.79 bZIP 0.62 35.0% FOSL2 (23%)

K562 0.74 0.62 37.0% ATF1 (46%), ATF3 (27%), JUNB (16%),

FOSL1 (10%)

GM12878 0.77 Hbox 0.67 58.0% PBX3 (22%)

TEAD4 TEA K562 0.53 GATA 0.83 96.6% GATA2 (100%), GATA1 (87%)

Novel Motif and Interacting TFs

ARID3 ARID3 HepG2 0.60 FOX 0.69 88.8% FOXA1 (92%), FOXA2 (90%)

K562 0.58 GATA 0.64 70.2% GATA2 (62%), GATA1 (33%)

FOXM1 FOXM GM12878 0.50 bZIP 0.62 37.8% ATF2 (97%), BATF (94%)

MEF2A NA K562 NA bZIP 0.64 39.6% ATF1 (52%), ATF3 (50%), JUNB (41%),

CJUN (40%), FOSL1 (35%), FOS (20%)

NR2F2 zfC4 K562 0.72 GATA 0.79 87.8% GATA2 (97%), GATA1 (67%)

NRF1 NA K562 NA bHLH 0.64 47.6% MAX (78%), BHLHE40 (47%), CMYC (42%),

USF1 (29%)

H1-hESC NA 0.64 47.0% MAX (28%), USF1 (25%), USF2 (18%)

HeLa NA 0.63 46.6% MAX (81%), USF2 (27%)

SIX5 SIX GM12878 0.49 NFkBp65 0.63 43.4% RELA (20%)

TCF12 E2A A549 0.51 bZIP 0.70 49.2% FOSL2 (98%), ATF3 (96%)

ZBTB7A zfC2H2_

EGR_RHD

HepG2 0.69 zfC4 0.63 78.8% RXRA (47%)

Tethered TF (or TF A) represents a ChIPed TF with an Indirect Module (or Module B) from the 8mer Glossary both enriched (Indirect AUROC) and

centered in the best 500 peaks of TF A; its Direct Module (or Module A) is used to calculate the Direct AUROC. Tethered TF peaks with Indirect Motif

returns the percentage of the best 500 peaks of TF A that contain 8mer(s) fromModule B. Furthermore, Tethering TF (or TF B) represents a candidate TF

(Table S3) from Indirect Module B, with the associated Peak Overlap Percentage between the best 500 peaks of Tethered TF A and all peaks of Teth-

ering TF B (adjusted Fisher’s exact test P < 0.05). Interactions without a TF B ChIP-seq dataset currently available (or none with significance) can be

found in Table S7. NA, not applicable.

(legend continued on next page)
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co-regulated by multiple TFs (Jolma et al., 2015; Spitz and

Furlong, 2012;Wang et al., 2012a). For reasons of computational

efficiency in the detection of these combinatorial cis regulatory

codes, a reduced core set of non-redundant motifs is often

more desirable than an exhaustive motif dictionary. Compared

with prior approaches (Gisselbrecht et al., 2013; Kheradpour

et al., 2007; Wang et al., 2012a), here we assembled a compact

glossary of 108 TF binding motifs by clustering the intrinsic 8mer

specificities obtained for individual TFs by PBMs. The primary

limitation of our glossary is that it comprises only TF-8mer bind-

ing data obtained from universal PBMs, which are limited to short

(<8 bp) motifs. Although a minority among human TFs, there are

TFs with longer sequence recognition, such as P53 or CTCF,

which are missing from the current glossary. For identification

of longer binding sites, the glossary could be expanded in the

future to incorporate data from other types of custom arrays (Sig-

gers et al., 2011a, 2011b) and from SELEX experiments (Jolma

et al., 2013, 2015).

In this study, we also developed GENRE, a construction

method for matched genomic background sequences with the

highest flexibility. In our comparative analysis, GENRE overall

outperforms four popular background approaches. Strikingly,

flanking genomic regions underperformed by far when mea-

suring indirect binding enrichment (Figure 5B), potentially

because they did not recapitulate the interdependencies be-

tween bias-prone features of ChIP-seq ‘‘bound’’ regions (Fig-

ure 2E). In contrast, GENRE controls for both the individual

feature distributions and their interdependencies, thus giving

backgrounds that precisely differentiate between noise and

biologically relevant weak signals (Figures 3C and 5B). To our

knowledge, GENRE allows matching onmore features than prior

methods for background construction. HOMER can account for

at most two features (GC content or CpG frequency) within

sequences that are either promoters or random genomic

sequences, while BiasAway matches only GC content. While

by default GENRE controls for four potential biases (GC content,

CpG frequency, promoter overlap, and repeat overlap), our

understanding of what genomic features are important for

regulatory function is incomplete, so we made GENRE readily

tunable to control for additional sequence features given by

the user. In the future, GENRE could be further developed

to build background sequences from: (1) data from other

sequence-based techniques (such as DNase-seq or ATAC-

seq), which may differ from ChIP-seq peaks in their sequence

biases, and (2) different species, which may exhibit different

biases in sequence composition.

Agreement on evaluation criteria for assessing the perfor-

mance of background sets or models of binding specificity in

motif enrichment analysis remain open questions. Compared

with other criteria utilized previously in assessing motif enrich-

ment (Worsley Hunt et al., 2014), our evaluation criteria offer a

biologically intuitive interpretation in terms of sensitivity (AUROC
We described these interactions in three categories based on previous litera

TF subset summarizes Tethered TF A and Tethering TF B interactions propos

analysis. The Previously Proposed Motif, Newly Predicted Corresponding T

agreed with previously proposed presence of an Indirect Module Bmotif in te

subset, we present novel interactions between Tethered TF A and Indirect
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distance correlation) and specificity (AUROC MAD) of the motif

binding response. While AUROC distance correlation quantifies

the enrichment of motifs located toward the center of the peak,

i.e., those likely anchoring the ChIPed TF to the DNA, a low

AUROC MAD signifies that few motifs are enriched within

regulatory regions, reflecting that only a minority of TFs controls

the transcriptional programs underlying cellular phenotypes. Our

criteria have the further advantage of utilizing AUROC values, an

accepted statistical metric in motif enrichment analysis (Gordan

et al., 2009; Weirauch et al., 2013). In addition to these criteria,

we used the TF expression profiles in various cell lines as an in-

dependent biological feature to evaluate which TF suggested by

the enriched indirect bindingmotifs is likely the tethering TF. This

approach could be improved in future studies by integrating

additional information, such as protein-protein interaction data

and chromatin-accessibility profiles, to provide further insights

into the underlying regulatory networks of tissue-specific gene-

expression programs.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-glutathione S-transferase, rabbit IgG

fraction, Alexa Fluor 488 conjugate

Invitrogen A11131; RRID: AB_2534137

Bacterial and Virus Strains

E. coli C41 DE3 cells Lucigen 60444

Chemicals, Peptides, and Recombinant Proteins

Cy3-conjugated dUTP GE Healthcare PA53022

Protease, from Streptomyces griseus Sigma P6911

Thermo sequenase cycle sequencing kit USB 78500

Deposited Data

PBM data UniPROBE http://the_brain.bwh.harvard.edu/uniprobe/

PBM data CIS-BP http://cisbp.ccbr.utoronto.ca/

Human reference genome hg19 UCSC http://hgdownload.soe.ucsc.edu/goldenPath/

hg19/bigZips/

ChIP-seq datasets ENCODE http://genome.ucsc.edu/cgi-bin/hgFileUi?

db=hg19&g=wgEncodeAwgTfbsUniform

hg19 blacklisted regions ENCODE http://hgdownload.cse.ucsc.edu/goldenPath/

hg19/encodeDCC/wgEncodeMapability/

wgEncodeDacMapabilityConsensusExcludable.

bed.gz

hg19 uniquely mappable regions ENCODE https://personal.broadinstitute.org/anshul/

projects/umap/encodeHg19Female/

globalmap_k20tok54.tgz

Oligonucleotides

HPLC-purified primer (unmodified) for

double-stranding of DNA oligonucleotide

array 5’-CAGCACGGACAACGGAACACAGAC-3’

Integrated DNA Technologies https://www.idtdna.com/site

Software and Algorithms

Masliner (v1.02) (Dudley et al., 2002) http://arep.med.harvard.edu/masliner/

pgmlicense.html

Universal PBM Analysis Suite (Berger and Bulyk, 2009) http://the_brain.bwh.harvard.edu/

PBMAnalysisSuite/index.html

R https://www.r-project.org/

Python 2 https://www.python.org/

BEDTools (Quinlan, 2014) https://github.com/arq5x/bedtools2/

samtools (Li et al., 2009) https://github.com/samtools/samtools

SQLite Hwaci http://sqlite.org/

SQLite extension Liam Healy https://github.com/rstats-db/RSQLite/

blob/master/src/vendor/sqlite3/

extension-functions.c

uShuffle (Jiang et al., 2008) http://digital.cs.usu.edu/�mjiang/ushuffle/

HOMER (Heinz et al., 2010) http://homer.ucsd.edu/homer/download.html

BiasAway (Worsley Hunt et al., 2014) https://github.com/wassermanlab/BiasAway/

DeepBind (Alipanahi et al., 2015) http://tools.genes.toronto.edu/deepbind/

PAGAN (Loytynoja et al., 2012) http://wasabiapp.org/download/pagan/

MAFFT (Katoh and Standley, 2013) http://mafft.cbrc.jp/alignment/software/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

GENRE This paper http://thebrain.bwh.harvard.edu/

glossary-GENRE/download.html

TF-8mer glossary This paper http://thebrain.bwh.harvard.edu/glossary-

GENRE/download.html

Other

Custom-designed ‘‘universal all 10-mer’’

oligonucleotide arrays

Agilent Technologies AMADID #015681

AMADID #016060

AMADID #030236

ActivePro in vitro transcription and translation kit Ambion AM1295 (Out of production)

PURExpress in vitro transcription and

translation kit

NEB E6800
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Martha L.

Bulyk (mlbulyk@genetics.med.harvard.edu).

METHOD DETAILS

Protein Binding Microarray (PBM) Experiments
We expressed proteins by either (i) purification from E. coli C41 DE3 cells (Lucigen), or (ii) in vitro translation reactions (Ambion

ActivePro Kit and NEB PURExpress) without purification, both as previously described (Badis et al., 2009; Berger et al., 2008). Briefly,

GST-TF fusion proteins were purified from E. coli overexpression cultures by GST affinity chromatography. The quality and concen-

tration of each such GST-tagged protein was estimated relative to a dilution series of GST standards on Coomassie-stained SDS-

PAGEgels. Alternatively, GST-TF fusion proteinswere expressed by in vitro transcription and translation following themanufacturer’s

protocol without subsequent purification. Western blots were performed to assess the quality and to approximate the concentration

of each resulting GST-TF fusion protein relative to a dilution series of recombinant GST standards. Custom-designed oligonucleotide

arrays (Agilent) were double-stranded and PBM experiments were performed following previously described experimental protocols

(Berger et al., 2006). The array designs employed were ‘‘all 10mer’’ universal arrays (Agilent Technologies). Experimental conditions

used for all PBM experiments, including gene names, protein expression method, Agilent AMADID numbers, TF concentrations,

cloning sequences and TF classes are described in Table S1.

PBM Data Processing
PBM scan images were obtained using a GenePix 4000A Microarray Scanner (Molecular Devices). The resulting image data were

processed using GenePix Pro v7.2 to obtain signal intensity data for each spot. The data were then further processed using

Masliner software (v1.02) (Dudley et al., 2002) to combine scans from different intensity settings, increasing the effective dynamic

range of the signal intensity values. If a dataset had any negative background-subtracted intensity (BSI) values (which can occur

if the region surrounding a spot is brighter than the spot itself), all BSI values were scaled such that they all became non-negative.

All BSI values were normalized using the software for spatial de-trending provided in the Universal PBM Analysis Suite (Berger and

Bulyk, 2009), as previously described (Berger et al., 2006). Briefly, Alexa488 signal was normalized by Cy3 signal for each spot to

account for differences in the amounts of double-stranded DNA. To correct for any possible non-uniformities in protein binding, we

further adjusted the Cy3-normalized Alexa488 signals according to the position of each spot within a 15 x 15 block centered on

each spot on the microarray.

PBM Evaluation for DNA-Binding Specificity
We used the Universal PBM Analysis Suite (Berger and Bulyk, 2009) to calculate the PBM enrichment score (E-score) for each of the

32,768 non-redundant, ungapped 8mers for each protein. The E-score is a rank-based statistic that is closely related to the area

under the receiver operating characteristic (ROC) curve and robust to technical variation across arrays (Berger and Bulyk, 2009).

Larger E-score values reflect higher specificity for binding a particular 8mer. The presence of E-scores R 0.45 has been reported

as a viable quality control metric to identify successful PBMexperiments (Berger et al., 2008;Weirauch et al., 2014). Here, we deemed

a PBM experiment to be of acceptable quality if it contained at least five 8mers with an E-score R 0.45.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Construction of the Glossary
Data Mining and Filtering

We collected 773 good quality PBM arrays (i.e., those that contained at least five 8mers with an E-score R 0.45) representing the

sequence specificity of more than 671 metazoan TFs from our unpublished experiments, CIS-BP (Weirauch et al., 2014) database,

and UniPROBE (Badis et al., 2009) database, noting gene names, organism of origin, original publication and TF classes (Table S1).

We combined the E-scores of these PBM arrays into a single data table with each PBMexperiment retained in a separate column and

each 8mer in a separate row. We used the rank-based PBM enrichment score (E-score) to quantify the preference of a TF for each

8mer (Berger et al., 2006) and used an E > 0.3 threshold to capture preferences for binding to a wide range of affinity sequences

(Barrera et al., 2016; Berger et al., 2008). We considered all 8mers with E-score > 0.3 as ‘bound’ by an assayed protein (Barrera

et al., 2016), and discarded 8mers that did not exhibit an E-score > 0.45 in at least one experiment. This filter reduced the initial num-

ber of 8mers to 10,926.

First Clustering

We independently clustered the rows and the columns of these data using Pearson correlations as distance and hierarchical agglom-

erative complete-linkage (‘‘hclust’’ function in R). From them, we obtained one dendrogram for the 8mers and one for the PBMs

(Figure S1A). We created several independent collections of 8mer clusters by repeatedly cutting the 8mer dendrogram with the

function ‘‘cutreeDynamicTree’’ (from R package ‘‘dynamicTreeCut’’, setting: maxTreeHeight=0.9, deepSplit=FALSE). Each dendro-

gram treecut differed by the minimal cluster size (CMS), which we varied between 20 and 100 8mers (red to orange bars, Figure 1B).

To associate specific PBM experiments to each 8mer cluster, we sorted the subtable defined by its 8mers and applied a 2-mean-

clustering on the E-score profile to discriminate PBM exhibiting high versus low specificity. The highly specific PBMs then were

coupled to the 8mer cluster, to form an 8mer-PBM cluster (black boxes in Figure S1B). We grouped the 8mer-PBM clusters obtained

by each individual CMS to form a single CMS collection (i.e., ‘‘20 CMS collection’’). We evaluated the different cluster collections by

the Davies-Bouldin index (DBI) (Davies and Bouldin, 1979), which compares the inter-cluster E-score difference against the intra-

cluster E-score similarity (small DBI for good tree cuts). Since cluster collections with smaller DBI tended to filter out more 8mers,

we corrected the DBI by the 8mer coverage (Figure S1C).

Merged Cluster Collection

To create a collection of 8mer-PBM merged clusters from the previous single CMS collections, we matched them through a cumu-

lative pairwise comparison (blue to cyan bars, Figure 1B). For the comparison scheme, we started comparing the 20 and 25 CMS

collections, creating a ‘‘20-25’’ intermediate collection. The intermediate ‘‘20-25’’ was then compared with the 30 CMS collection

to create the ‘‘20-30’’ intermediate collection. This comparison scheme was iterated up to the 100 CMS collection, creating the

‘‘20-100’’ intermediate collection which, after a further comparison with an asymptotic collection formed by a single cluster for

the whole 8mer dendrogram, furnished the final Merged Clusters. For the rules of cluster merging between two collections (A and

B), we used the following assumption:

1-to-1 match: if the 8mers of a cluster from A overlapped uniquely with the 8mers of one and only one cluster from B, we merged

their 8mers into a single cluster in the next intermediate collection.

Cluster rescue: if all the 8mers of a cluster from A did not fall in any cluster of B, we inserted the cluster in the next intermediate

collection.

Neighbor clusters comparison: if the 8mers of two (or more) clusters from collection A jointly overlapped the 8mers of one (or more)

clusters from collection B, we cut the 8mer interval in all the possible tree cut intervals suggested by the two tree cuts (dotted lines

in Figure 1B), which creates a new set of minimal clusters (green bars in Figure 1B). Within this set, we compared each pair of contig-

uous 8mer-PBM clusters. To merge two clusters (green arrows in Figure 1B) we first required that their difference in the average

E-scores was less than 0.12, as a criterion to ensure that the 8mers of the two clusters exhibit a sufficiently similar overall specificity

to the associated TF PBMs. Moreover, within each of the two clusters, we quantified the average E-score of the PBMs over the

8mers. If the overall variability of the average E-score of the PBMs in the two clusters (i.e., the sum of the Standard Deviation of

the average E-score for PBMs in the two clusters) was also less than 0.12, we merged the two clusters. If this variability was higher

than 0.12, we further required that the average E-score values of the PBMs in the two clusters were positively correlated (Spearman

rank correlation coefficient rho (R) > 0.1, p < 0.05) to merge 8mer clusters with similar E-score profiles for the associated PBMs. We

empirically found that these conditions reliably merged two clusters exhibiting the same E-score pattern across PBM experiments.

When compared to the collections obtained by single CMS, the merged cluster collection showed the smallest corrected DBI index

(best clustering) (Figure S1C), the highest coverage, and its clusters encompassed the widest range of 8mer sizes (data not shown).

Re-clustering

To ensure convergence and robustness of the clustering, we re-clustered the merged cluster collection. To filter out noise, we first

assigned the E-score basal value (0.3) to any 8mer-PWM pair not contained in the merged clusters (background filtering). For these

filtered data, we obtained 8mer and PBM dendrograms, as described for the first clustering (re-clustering). The background E-score

values were then re-assigned to each 8mer-PBM pair (background rescue), and the dendrogram were repeatedly cut and compared

to create the merged clusters collection. We renamed this collection as ‘‘glossary’’, and its 8mer-PBM merged cluster as ‘‘TF-8mer

module’’, naming eachmodule according to the class of the TFs assayed by themost specific PBMs. Overall, the glossary contained

671 non-redundant TFs from 715 PBM datasets and 10,428 8mers. Importantly, each 8mer is assigned to just one module, but the
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same PBM (and therefore its assayed TF) can be associated with several modules (right panel Figure 1C, middle-right panels in

Figure S1D).

Evaluation of Module Purity for TF Class

To evaluate how strongly each module was associated to a single TF class, we defined a ‘‘Purity Index’’ for the modules as follows. If

all the PBMs associated with a certain module assayed TFs from the same class, then that module’s Purity Index was assigned as

100% (i.e., TEA, IRF and FOXmodules in Figure S1D). If the module’s PBMswere assaying TFs from several TF classes, each PBM in

the module was assigned its average 8mer E-score (i.e., E-scorePBM = <E-scores(8merscluster, PBM)>). Each TF class was then

assigned the highest value of its associated PBMs (i.e., E-scoreTFclassA = max(E-scoreTFclassA_PBM1, E-scoreTFclassA_PBM2, ...). We

than ranked the E-scores assigned to all the TF classes presented in the module in a decreasing order (i.e., E-scoreFirst_TFclass >

E-scoreSecond_TFclass > .> E-scoreLast_TFclass) and defined the Purity Index as following:

Module Purity Index = (E-scoreFirst_TFclass - E-scoreSecond_TFclass)/( E-scoreFirst_TFclass - E-scoreLast_TFclass)
Derived PWMs from Glossary’s 8mer Modules

To build a PWM for each module, we ranked 8mers by their average E-score. We oriented the ranked 8mers using the program

PAGAN(Loytynoja et al., 2012), aligned them to create a PWM with the program MAFFT(Katoh and Standley, 2013), and visualize

the resulting PWM via the R-package seqLogo (Table S2).

Motif Enrichment Analysis in ChIP-seq Peaks
To examine ChIP-seq peaks for the enrichment of a TF binding specificity motif, represented either by a PWM, an 8mer module, or a

DeepBind motif model, we calculated the area under receiver operating characteristic curve (AUROC) statistics to evaluate the

enrichment (Weirauchetal., 2013) in the500ChIP-seqpeaksequenceswith thehighest fold-changeabove the localdistributionof reads

modeledbyaPoissondistribution (Fengetal., 2011).We trimmed thepeaks toencompassamaximumof200bpbyusing thepositionof

the peak center (also referred in the text as peak summit) provided by the original datasets. As the background set, we generated an

equally sized set of 500 sequences with one of the methods for background construction discussed in the text and below.

To compute a PWM-based AUROC, each sequence in the foreground and background sets was scanned by the PWM

(function ‘‘PWMmatch’’ in R package Biostrings) and then assigned a score corresponding to the best PWM match (function

‘‘PWMscoreStartingAt’’ in R package Biostrings). The position of the best PWM match within the sequence was also recorded and

used toevaluate themotif distance from thepeaksummit (‘‘Motif-SummitDistance’’). TheAUROCstatisticwasobtainedbycalculating

sensitivity and specificity values as the score threshold for predicting a region to be bound was varied between 0 and the max score.

To compute 8mer-based AUROC for a glossary’s module, we first looked through each foreground and background sequence for

matches to the module’s 8mers, scoring each sequence by the highest E-scores of its matching 8mers. This E-score value repre-

sented the binding probability of the sequence to be used in the AUROC analysis. As previously described (Barrera et al., 2016),

the AUROC statistic was obtained by calculating sensitivity and specificity values as the E-score threshold for predicting a region

to be bound was varied between 0.3 and 0.5 (the range of E-scores used in this study). The P-values associated with each AUROC

value were calculated by using aWilcoxon signed-rank test comparing the scores for foreground and background sequences, which

we adjusted with a False Discovery Rate test for multiple hypotheses along the 108 motifs of the glossary. The position of the best-

matched 8mer was also used to evaluate the Motif-Summit distance.

For each backgroundmethod and TF specificity model, we evaluated across all the combinations of one ChIP-seq dataset and one

glossary module: (1) the median absolute deviation (MAD) of the AUROC values and (2) the Spearman rank correlation coefficient rho

(R) between AUROC values and Motif-Summit distance. We computed the AUROC MAD through the function ‘‘mad’’ in R-package

‘‘stats,’’ which by definition returns themedian of the absolute deviations from themedian and adjusts it by a constant for consistency

with the standard deviation in case of normal distributions:

mad(Xi) = 1.483*median(jXi –median(Xi)j)
For the values in Figures 3C and 4B, the total number of ChIP-seq-module combinations, which are represented as data points in

the plots, are:

239 ChIP-seq datasets x 108 TF-8mer modules = 25,812
For the TF-family subsets in Figures 3D, 3E, and S4, the total number of ChIP-seq-module combinations varied between 108 (MYB)

and 3,780 (bHLH).

To compute the AUROC for sequences analyzed using DeepBind models (Alipanahi et al., 2015), each sequence in the foreground

and background sets was scanned using the open source C-code ‘‘DeepBind.c’’ provided in the DeepBind webpage (http://tools.

genes.toronto.edu/deepbind/). We used the code’s standard mode, which returns the DeepBind score of the best match. We also

developed a ‘‘position’’ option in the ‘‘DeepBind.c’’ code that returns the distance between the best match and the peak summit.

Similarly to the PWM case, the AUROC statistic was obtained by calculating sensitivity and specificity values as the threshold of

the DeepBind score was varied between 0 and the max score.
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In the case of Figure S5, since just 13 PBM datasets representing modules were available as DeepBind motif models, the total

number of ChIP-seq-module combinations for each was (239*13) = 3,107.

Building Background Sets for ChIP-seq Peaks
From the ‘‘foreground’’ dataset of genomic regions defined as a BED file, we obtained the actual sequences with the ‘‘getfasta’’ com-

mand from BEDTools (Quinlan, 2014) using the unmasked genome as input. Using the BED file and fasta file as required, we created

the following background sets:

Dinucleotide Shuffle

We obtained the permuted sequences with identical dinucleotide frequencies and length using uShuffle software (Jiang et al., 2008).

Flanking Regions

Genomic regions 1000 bp upstream from the ChIP-seq peak were obtained using the ‘‘getfasta’’ command as for the foreground. We

decided to use 1000 bases as an intermediate flanking distance among several proposed in similar analysis (Bailey and Machanick,

2012; Orenstein and Shamir, 2014; Siggers et al., 2011a; Wang et al., 2012a), ranging from 300 to 2000 bp. Notably, the ChIP-seq

peaks in the foreground datasets have a median size of 305 bp (+/- 110), ensuring that the flanking regions do not overlap with the

actual peaks.

GC-BiasAway

We downloaded BiasAway (Worsley Hunt et al., 2014) from https://github.com/wassermanlab/BiasAway/ and the human 200 bp

background repository from http://cisreg.cmmt.ubc.ca/BiasAway_background/. After learning that the program was not equipped

to handle a directory as a background, we randomly sampled 5000 sequences from each repository 1% bin file and put them into

a single fasta file to be used as the background pool file. The BiasAway subcommand ‘g’ (%GC distribution-based background

chooser) was used for each foreground ChIP set.

GC-HOMER

We used HOMER (Heinz et al., 2010) version 4.6 subprogram findMotifsGenome.pl with the arguments hg19, -size 200, -N 500 to

coincide with our foreground set; -dumpFasta to obtain the background fasta file; -nomotif and -noknown to avoid any de novomotif

searching.

GENRE

Weused the hg19 uniquelymappable regions (ENCODEProject Consortium, 2012) subtracted by hg19 blacklisted regions (ENCODE

Project Consortium, 2012) as the BED file to be tiled for possible background regions (https://personal.broadinstitute.org/anshul/

projects/umap/encodeHg19Female/globalmap_k20tok54.tgz; http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz, respectively). The chosen matched features from

the UCSC hg19 genome version (Speir et al., 2016) were: promoters (defined as 2 kilobases upstream of transcription start sites

(TSS) according to strandedness for known genes), repeat regions (Repeat Masker files), GC content and CpG dinucleotides (un-

masked genome). The overall binning scheme that we chose was: independently binning promoters and repeats with binary ranges,

and then nesting quartiles of GC content and subsequently CpG dinucleotides. The all-but-one analysis seen in Figure S3 utilized the

same nested quartile scheme, but removing one feature, i.e., for leaving promoters out, we binned repeats in a binarymanner, and for

each repeat bin (0/not0), quartiles were nested first for GC content and then for CpG dinucleotides.

GENRE Implementation and Benchmarking
Database Construction

GENRE is a background generation tool that builds an a priori database of possible background regions that are matched to

foreground regions via user-defined features. It has been implemented using Python, SQLite (with a common mathematical

and string function library extension from R package RSQLite written by Liam Healy), and BEDTools (Quinlan, 2014). Initially, a

BED file is tiled into uniformly sized regions and loaded into a table in the database. That table is then extended to include the

real values associated with each feature’s overlap percentage as calculated by BEDTools (genomic features via ‘‘intersectBed’’

with the feature’s BED file; compositional features via ‘‘nucBed’’ with a fasta file). The user can then decide how to bin features, either

by ranges (i.e. binary – ‘‘0,(0-100]’’), equal percent size (e.g., 5% bins), or nested quartiles (e.g., GC quartiles stratified by promoters).

Each binning scheme is housed in its own table within the database.

Table Binning – Nested Quartiles

GENRE, being able to match for multiple features, can present with a scarcity problem; lesser populated multiplexed background

bins may not contain enough sequences from which to build a background set. While background scarcity was only a minor issue

for this study, it could potentially become a larger problem for smaller genomes with fewer possible background sequences and an-

alyses that require a background multiple times bigger than the foreground. Giving a nested quartiles option addresses this issue by

binning the background to match the overall interdependent feature densities of the foreground with quartiles to modulate bin size

(Figures 2C–2E and S2). The more populated multiplexed bins should be the same in both the foreground and the background, re-

sulting in fewer issues finding multiple matches to a foreground region within a proportionally larger background bin. This is done by

first finding the independently grouped feature combinations, and then for each group, nesting for loops for every subsequent nesting

criterion. Within each for loop, the quartiles of the nesting criterion are found, and the where clause of the query is updated to only
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include background regions that fall into the independent group combination and individual quartile ranges. The last for loop writes

the where clause information into a quartile bin table within the database to be used when mapping foreground regions to back-

ground bins.

Database Querying for Background

To match a foreground set, each region’s percent overlap is found and binned in the same way as the designated background table.

That table’s matching multiplexed bin is randomly sampled without replacement per foreground region for the user-requested mul-

tiplicity of background sequences. If all foreground regions find amatch, the background set is validated, and a background fasta file

is made using ‘‘fastaFromBed’’ of the BEDTools suite and a supplied fasta file.

Motif Enrichment of Highly Expressed TFs
Wewanted to evaluate whether the enrichment of a motif not bound directly by a ChIPed TF was predictive of the high expression of

TFs specific for a cell line. For that, we collected RNA-seq data from ENCODE (Table S5), which profiled the expression of most of the

cell lines assayed in our ChIP-seq datasets. In each cell line, we ranked the genes according to their expression level (FPKM), where

low rank indicates high expression. If there were replicate RNA-seq datasets, the average FPKMwas computed and used to rank the

cell line expression profile.

For the TFmotifs, we focused on the 12 TF families with strong DNA binding preferences (‘‘tethering motifs’’ list: POU, GATA, FOX,

KLF, CEBP, MAF, IRF, ETS, TEA, AP2, ZIC and E2A) that play a relevant role in transcriptional control and cellular differentiation. To

compare the different settings used in this study for motif enrichment analysis, we considered the AUROC values obtained previously

(Figures 3 and 4). For each setting, we obtained the AUROC values for the 12 tethering motifs across the ChIP-seq datasets. To

include only tethering interactions between the motif and the ChIPed TF, we sorted out AUROC values coming from cases of direct

binding (such as GATA motif enrichment in GATA3 peaks in MCF-7 cells). For the other cases of indirect binding, we selected the

ChIP-seqmotif pair exhibiting a significant AUROC enrichment (p < 0.05). For each pair, we then asked whether at least one TF asso-

ciated to themotif (‘‘tethering TF’’) was highly expressed in the cell line assayed byChIP-seq. The TFwasmarked as highly expressed

if its expression rank was greater than a predefined threshold (i.e., top 3000 genes, see below). If this was the case, we recorded the

event as positive. For each of the 12 motifs along the whole ChIP-seq dataset, the count of highly expressed tethering TFs was

recorded.

A permutation test was performed for 200 randomly reshuffled genomes (Barrera et al., 2016) to determine the null value of highly

expressed TFs per motif. The p value was calculated as the proportion of times the reshuffled genome found more highly expressed

genes than the real genome. A robust Z-score of finding highly expressed potential tethering factors was calculated as follows where

x is the number of highly expressed genes in a ChIP-seq set A:

ZA =
xA �medianx

MAD

Expression Rank of Lineage-Specific TFs

We considered well-established lineage-specific TFs for 7 cell types with publicly available transcriptomic profiles (RNA-seq data

from ENCODE, Table S5): Sox2 (Wang et al., 2012b; Zhou et al., 2016) and POU5F1 (Wang et al., 2012b) in hESC cells, IRF4 (Mendez

andMendoza, 2016) and PAX5 (Mendez andMendoza, 2016) in B cells, MYOD1 (Fong et al., 2015) in skeletal muscle cells, GATA1/2

(Bresnick et al., 2012) in K562, HNF4A (Nagy et al., 1994) and FOX2 (Lee et al., 2005) in HepG2, and GATA3 (Takaku et al., 2015) in

Mcf-7. For each cell type, we independently ordered the genome by expression level (FPKM), and we found that the lineage-specific

TFs were within the top 3,000 genes in their respective cell types, but were of lower expression ranks (>5,000) in lineages they do not

specify.

Predicting Binding Type from Motif Enrichment

We identified the subset of glossary’s 8mermodules that showed a significant enrichment of their associated TFs’ DNA binding spec-

ificities in at least one of the their cognate ENCODE TF ChIP-seq datasets used in this study (Table S3). For example, the TEAmodule

was selected since it was enriched in TEAD4 ChIP-seq peaks in HepG2 cells. This sorting ensured that the enrichment of these mod-

ules is bona fide due to the direct binding of a TF to its cognate motif. These modules are: KLF, AP2, RFX, GATA, ETS, FOX, IRF,

NFkBp65, HNF4, CEBP, bZIP, MAF, TEA, POU, Hbox, E2A, EGR, GR, E2F_zfC2H2, zfC4, TCF7, bHLH, ETSI, FOXM, ETSIII,

ZFP691, ESRR, ARID3, zfC2H2_EGR_RHD.

The enrichment of a module to a ChIPed TF dataset through direct binding (i.e., TEA module enrichment in TEAD4 ChIP-seq for

K562, HepG2 and ESC cells; green dots in Figure 6A) were further separated out and reported in Table S4; we refer to these modules

as ‘‘Direct Module A’’. The remaining combinations, which evaluate the potential indirect binding of the ChIPed TF (‘‘Tethered TF A’’)

through a tethering factor (‘‘Tethering TF B’’) that is among the TFs that are specific for the interacting module (‘‘Indirect Module B’’),

were identified as those with AUROC > 0.6 and distance-to-summit < 40 bp as criteria (black dots in Figure 6A). More precisely, we

put these limits on the indirect binding to avoid the bulk of non-enrichment unlikely to yield true results, as suggested by Figure 4A.

The schematics of these potential indirect binding mechanisms with their naming schemes are shown in Figure 6B. These analyses

indicated 48 indirect binding interactions (which sometimes occurred in multiple cell lines): 16 of which have been well-validated in

previous experimental reports; 19 have been proposed in some previous analysis and are supported by our findings; and 13 that are

to our knowledge newly identified in this study (Table S6). Table S6 also denotes the percentage of the tethered TF A’s best 500 peaks
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that contain its own direct motif (i.e., at least one 8mer of Direct Module A within the peak), its potential indirect motif (i.e., at least one

8mer of Indirect Module B within the peak), and both motifs together. We performed a Fisher Exact Test with correction for false dis-

covery rate (FDR) (fisher.test and p.adjust functions in R) to test two hypotheses: the first is to determine whether the co-occurrence

of the two motifs within the same peaks is significantly enriched (fisher.test argument: alternative = ‘‘greater’’), and the second is to

determine whether the co-occurrence of the twomotifs within the same peaks was significantly depleted (fisher.test argument: alter-

native = ‘‘less’’). An example 2x2 contingency table is shown below for the bZIP TF BACH1 putatively being tethered by the MAF

family TF MAFK in H1-hESC cells (row 2 in Table S6), indicating a significantly enriched (p < 0.05) co-occurrence of the bZIP and

MAF motifs (schematic in Figure 6B).
Peaks with motifs from: Direct Module A (bZIP) No Direct Module A

Indirect Module B (MAF) 301 94

No Indirect Module B 46 59
To further investigate the potential interaction between the Tethered TFs A and their Indirect Module(s) B of Table S6, we analyzed

the extent to which the set of ChIP-seq peaks of TFs A and B overlap. We considered the top 500 peaks of every Tethered TF Awith a

potential indirect interaction. We trimmed each peak to 200 bp, as defined above (see ‘‘Analysis of motif enrichment and Motif-Sum-

mit distance in ChIP-seq peaks’’). Of all the analyzed ChIP-seq datasets (Table S3), we then restricted our analysis to those for which

a TF specific to Indirect Module B was also profiled by ChIP-seq in the same cell type (candidate Tethering TF). For each candidate

Tethering TF, we then trimmed its ChIP-seq peaks to 200 bp and intersected them with the Tethered TF A file (‘‘intersectBed’’ of

BEDTools) to determine how many of the Tethered TF A peaks overlapped the candidate Tethering TF peaks. The Tethering TF B

overlapping the highest number of Tethered TF A peaks is listed in Table S7. To ensure robustness, this analysis was repeated varying

the cutoff for the number of best peaks of Tethering TFB (All, 20000, 10000, 5000, 2000, 1000, 500 top peaks; Table S7). Typically, the

potential tethering overlap occurs primarily within the top 5000 peaks of Tethering TF B, which in many cases overlap with all the

peaks of the Tethered TF A.

For interactions with partially overlapping sets of peaks (10% < All Peaks Overlap Percentage < 90% in Table S7), we tested

whether the presence of the indirect motif (i.e., 8mer of Indirect Module B) within the peak was discriminative of the peak overlap

between Tethered TF A and Tethering TF B. For that, we used a Fisher Exact Test with FDR correction (Table S8); for example,

BACH1 peaks (Tethered TF A) potentially tethered by MAFK (Tethering TF B) in H1-hESC cells had the following contingency table:
BACH peaks with: MAF Motif No MAF Motif

MAFK peak Overlap 392 50

With No Overlap 3 55
and was statistically significant (p < 0.05). For those interactions that were not statistically significant, the indirect interaction may still

be valid, but the responsible Tethering TF B that recognized Module Bmay be different from the one(s) for which ChIP-seq data were

available for our analysis.

We repeated the Fisher Exact Test with FDR correction from Table S8 for the entirety of the candidate Tethering TFs, regardless of

maximum overlap (data not shown). Those statistically significant interactions (p < 0.05) that have not yet been fully validated in the

literature are reported in Table 1 as well as any fully overlapping interactions where a Fisher Exact Test is not appropriate due to the

lack of a negative case. Representative examples of those putative indirect interactions are shown in Figure 6D.

DATA AND SOFTWARE AVAILABILITY

PBM Data
The new PBM data for 63 TFs have been deposited into the publicly available UniPROBE database of PBM data (publication dataset

accession MAR17A).

Software
Both the glossary of TF-8mer modules and the GENRE suite are publicly available at http://thebrain.bwh.harvard.edu/

glossary-GENRE/download.html.
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